14x^2+120x-4500=0

Simple and best practice solution for 14x^2+120x-4500=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 14x^2+120x-4500=0 equation:


Simplifying
14x2 + 120x + -4500 = 0

Reorder the terms:
-4500 + 120x + 14x2 = 0

Solving
-4500 + 120x + 14x2 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), '2'.
2(-2250 + 60x + 7x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-2250 + 60x + 7x2)' equal to zero and attempt to solve: Simplifying -2250 + 60x + 7x2 = 0 Solving -2250 + 60x + 7x2 = 0 Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. -321.4285714 + 8.571428571x + x2 = 0 Move the constant term to the right: Add '321.4285714' to each side of the equation. -321.4285714 + 8.571428571x + 321.4285714 + x2 = 0 + 321.4285714 Reorder the terms: -321.4285714 + 321.4285714 + 8.571428571x + x2 = 0 + 321.4285714 Combine like terms: -321.4285714 + 321.4285714 = 0.0000000 0.0000000 + 8.571428571x + x2 = 0 + 321.4285714 8.571428571x + x2 = 0 + 321.4285714 Combine like terms: 0 + 321.4285714 = 321.4285714 8.571428571x + x2 = 321.4285714 The x term is 8.571428571x. Take half its coefficient (4.285714286). Square it (18.36734694) and add it to both sides. Add '18.36734694' to each side of the equation. 8.571428571x + 18.36734694 + x2 = 321.4285714 + 18.36734694 Reorder the terms: 18.36734694 + 8.571428571x + x2 = 321.4285714 + 18.36734694 Combine like terms: 321.4285714 + 18.36734694 = 339.79591834 18.36734694 + 8.571428571x + x2 = 339.79591834 Factor a perfect square on the left side: (x + 4.285714286)(x + 4.285714286) = 339.79591834 Calculate the square root of the right side: 18.433554143 Break this problem into two subproblems by setting (x + 4.285714286) equal to 18.433554143 and -18.433554143.

Subproblem 1

x + 4.285714286 = 18.433554143 Simplifying x + 4.285714286 = 18.433554143 Reorder the terms: 4.285714286 + x = 18.433554143 Solving 4.285714286 + x = 18.433554143 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-4.285714286' to each side of the equation. 4.285714286 + -4.285714286 + x = 18.433554143 + -4.285714286 Combine like terms: 4.285714286 + -4.285714286 = 0.000000000 0.000000000 + x = 18.433554143 + -4.285714286 x = 18.433554143 + -4.285714286 Combine like terms: 18.433554143 + -4.285714286 = 14.147839857 x = 14.147839857 Simplifying x = 14.147839857

Subproblem 2

x + 4.285714286 = -18.433554143 Simplifying x + 4.285714286 = -18.433554143 Reorder the terms: 4.285714286 + x = -18.433554143 Solving 4.285714286 + x = -18.433554143 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-4.285714286' to each side of the equation. 4.285714286 + -4.285714286 + x = -18.433554143 + -4.285714286 Combine like terms: 4.285714286 + -4.285714286 = 0.000000000 0.000000000 + x = -18.433554143 + -4.285714286 x = -18.433554143 + -4.285714286 Combine like terms: -18.433554143 + -4.285714286 = -22.719268429 x = -22.719268429 Simplifying x = -22.719268429

Solution

The solution to the problem is based on the solutions from the subproblems. x = {14.147839857, -22.719268429}

Solution

x = {14.147839857, -22.719268429}

See similar equations:

| -1/2*32*2.9^2 | | 5a-4/3=7 | | 0.8(x+7)+1.8(x-6)= | | 9+2(x+6)=28 | | 20x-25/5 | | 40x-25=15x+5 | | -7/(x-6)=5 | | d/s-r/s=1 | | 2(x+5)-3x=15 | | b=(a-ha)/h | | 6m+5n+7m+4n= | | 2lm(5x-4)=20 | | 9+2y-3=5y+10-2y | | 3y-4=28 | | -16t^2+48t+28=s(t) | | 4/9X8/52 | | 9(t-6)+5t=7(2t+5)-12 | | -2(-6w+8)-6w=2(w-1)-8 | | 10n=92+21 | | j^7*j^1= | | 69=(r)23 | | 15=4(y+11) | | 3/8-1/12=x/3 | | 4+8+x=19 | | -8/5 | | 7x+15=7x-15 | | 625(.056)+25(.04c)+c=35 | | 2*x+x=60 | | w^2+13w-2=0 | | 625(.056)+25b+c=35 | | 12x+24(x-5)=56x | | 15=14(y+11) |

Equations solver categories